首页 > 汉语词典 > 白矮星
白矮星是什么意思

词条:『白矮星』  
拼音:bái ǎi xīng

以上是白矮星的词条读音等信息,下面是白矮星的意思在词典中的详细解释。




◎ 详细解释
白矮星

拼音:bái ǎi xīng
词条内容:白矮星(White Dwarf)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。白矮星的密度极高,一颗质量与太阳相当的白矮星体积只有地球一般的大小,微弱的光度则来自过去储存的热能。在太阳附近的区域内已知的恒星中大约有6%是白矮星。
概述;白矮星白矮星(white dwarf),也称为简并矮星,是由电子简并物质构成的小恒星。它们的密度极高,一颗质量与太阳相当的白矮星体积与地球相当,微弱的光度则来自过去储存的热能。这种异常微弱的白矮星大约在1910年就被亨利·诺利斯·罗素、爱德华·皮克林和威廉·佛莱明等人注意到,白矮星的名字是威廉·鲁伊登在1922年确定的。
白矮星被认为是低质量恒星演化阶段的最终产物。白矮星的内部不再有物质进行核融合反应,因此恒星不再有能量产生,也不再由核融合的热来抵抗重力崩溃;它是由极端高密度的物质产生的电子简并压力来支撑。物理学上,对一颗没有自转的白矮星,电子简并压力能够支撑的最大质量是1.4倍太阳质量,也就是钱德拉塞卡极限。许多碳氧白矮星的质量都接近这个极限的质量,通常经由伴星的质量传递,可能经由所知道的碳引爆过程爆炸成为一颗Ia超新星。
特征;白矮星1、体积小,白矮星的半径接近于行星半径,平均小于103千米。
2、光度(恒星每秒钟内辐射的总能量,即恒星发光能力的大小)非常小,要比正常恒星平均暗103倍。
3、质量小于太阳质量。
4、密度高达106~107克/厘米3 ,其表面的重力加速度大约等于地球表面重力加速度的10倍到104倍。假如人能到达白矮星表面,那么他休想站起来,因为在它上面的引力特别大,以致人的骨骼早已被自己的体重压碎了。
5、白矮星的表面温度很高,平均为103℃。
存在数量;截止到2011年,人们已经观测发现的白矮星有1000多颗。1982年出版的白矮星星表表明,银河系中有488颗白矮星,它们都是离太阳不远的近距天体。根据观测资料统计,大约有3%的恒星是白矮星,但理论分析与推算认为,白矮星应占全部恒星的10%左右。
发现历史
白矮星的组成粒子图第一颗被发现的白矮星是三合星的波江座 40,它的成员是主序星的波江座 40A,和在一段距离外组成联星的白矮星波江座 40B和主序星的波江座 40C。波江座 40B和波江座 40C这一对联星是威廉·赫歇尔在1783年1月31日发现的,它在1825年再度被Friedrich Georg Wilhelm Struve观测,1851年被Otto Wilhelm von Struve观测。
1892年,Alvan Graham Clark发现了天狼星的伴星。根据对恒星数据的分析,这个伴星的质量约一个太阳质量,表面温度大约25000K,但是其光度大约是天狼星的万分之一,所以根据光度和表面积的关系,推断出其大小与地球相当。这样的密度是地球上的物质达不到的。1917年,Adriaan Van Maanen发现了(截止到2011年)已知离太阳最近的白矮星Van Maanen星。
在20世纪初由Max Planck等人发展出量子理论之后,Ralph H. Fowler于1926年建立了一个基于费米-狄拉克统计的解释白矮星的密度的理论。
1930年,苏布拉马尼扬·钱德拉塞卡发现了白矮星的质量上限(钱德拉塞卡极限),并因此获得1983年的诺贝尔物理学奖。
形成过程;白矮星根据现代恒星演化理论,白矮星是在红巨星的中心形成的。当红巨星的外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,于是氦开始聚变成碳。
经过几百万年,氦核燃烧殆尽,现在恒星的结构组成已经不那么简单了:外壳仍然是以氢为主的混和物;而在它下面有一个氦层,氦层内部还埋有一个碳球。核反应过程变得更加复杂,中心附近的温度继续上升,最终使碳转变为其他元素。与此同时,红巨星外部开始发生不稳定的脉动振荡:恒星半径时而变大,时而又缩小,稳定的主星序恒星变为极不稳定的巨大火球,火球内部的核反应也越来越趋于不稳定,忽而强烈,忽而微弱。此时的恒星内部核心实际上密度已经增大到每立方厘米十吨左右,此时,在红巨星内部,已经诞生了一颗白矮星。
中低质量的恒星在渡过生命期的主序星阶段,结束以氢融合反应之后,将在核心进行氦融合,将氦燃烧成碳和氧的3氦过程,并膨胀成为一颗红巨星。如果红巨星没有足够的质量产生能够让碳燃烧的更高温度,碳和氧就会在核心堆积起来。在散发出外面数层的气体成为行星状星云之后,留下来的只有核心的部份,这个残骸最终将成为白矮星。因此,白矮星通常都由碳和氧组成。但也有可能核心的温度可以达到燃烧碳却仍不足以燃烧氖的高温,这时就能形成核心由氧、氖和镁组成的白矮星。同样的,有些由氦组成的白矮星是由联星的质量损失造成的。
演化原理;原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。假如核的大小象一颗玻璃球,则电子轨道将在两公里以外。而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体将尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质也将大大增多,密度大大提高了。形象地说,这时原子核是“沉浸于”电子中。
一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,维持着白矮星的稳定。顺便提一下,当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星或黑洞。
对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过一百亿年的漫长岁月,年老的白矮星将渐渐停止辐射而死去。它的躯体变成一个比钻石还硬的巨大晶体——黑矮星而永存。而对于多星系统,白矮星的演化过程则有可能被改变。
威胁地球论;科学家证实,银河系中的白矮星是距离地球最近的“定时炸弹”,每隔20年就会有一次小爆发,天文学家称,数百万年后,白矮星从伴星那儿获得足够的质量后,会爆炸成为超新星,并将威胁到地球的安全。
白矮星在不断侵吞它的伴星,如果白矮星质量不断增加,将最终达到所谓的钱德拉塞卡极限( Chandrasekhar Limit ),经过瞬时引力收缩过程,将导致热核爆炸并完全摧毁白矮星,变成一颗“Ia”超新星,在此过程中释放出比新星爆炸大1千万倍的能量。
白矮星将来会爆炸成为超新星。超新星发出的伽马射线将威胁地球的安全,其能量相当于太阳耀斑的1000倍。天文学家称,超新星发出的伽马射线使得地球大气层产生氮氧化物,将完全破坏臭氧层。天文学家称,离地球100光年的超新星爆炸将可能摧毁地球。
 



收藏本页】【打印】【关闭】【顶部
©2009-2019 中华隆取名网 版权所有